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Abstract 

Micro-sized cold atmospheric plasma (µCAP) has been developed to expand the applications of 

CAP in cancer therapy. In this paper, µCAP devices with different nozzle lengths were applied to 

investigate effects on both brain (glioblastoma U87) and breast (MDA-MB-231) cancer cells. 

Various diagnostic techniques were employed to evaluate the parameters of µCAP devices with 

different lengths such as potential distribution, electron density, and optical emission spectroscopy. 

The generation of short- and long-lived species (such as hydroxyl radical (•OH), superoxide (O2
-), 

hydrogen peroxide (H2O2), nitrite (NO2
-), et al) were studied. These data revealed that µCAP 

treatment with a 20 mm length tube has a stronger effect than that of the 60 mm tube due to the 

synergetic effects of reactive species and free radicals. Reactive species generated by µCAP 

enhanced tumor cell death in a dose-dependent fashion and was not specific with regards to tumor 

cell type. 

Key words: Micro-sized, Cold atmospheric plasma, Reactive species, Breast cancer, Glioblastoma 

cancer, cancer therapy 
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Introduction 

Cold atmospheric plasma (CAP) has been proposed as a novel therapeutic method for anticancer 

treatment, which can be applied to living tissues and cells1,2. CAP is a partially ionized gas that 

contain charge particles, reactive oxygen and nitrogen species (ROS and RNS), excited atoms, free 

radicals, UV photons, electric field, etc3,4. ROS and RNS, combined or independently, are well 

known to initiate different signaling pathways in cells and to promote oxidative stress5,6. Plasma-

induced biological effects include damage lips, proteins, DNA, and induce apoptosis through 

plasma-generated ROS and RNS7-10. Moreover, many studies have reported both in vivo and vitro 

that plasma is a possible adjunct treatment in oncology as well as killing achieved for various types 

of cancers such as glioblastoma, breast cancer, bladder carcinoma, cervical carcinoma, skin 

carcinoma, pancreatic carcinoma, lung carcinoma, colon carcinoma, gastric carcinoma, melanoma 

and hepatocellular carcinoma11-27. 

In plasma medicine, jet plasma, corona discharge, and dielectric barrier discharge (DBD) have 

been used28. These types of plasma can be directly applied to skin cancers, while they are not 

applicable for more systemic cancer treatment. Some studies investigated the plasma device in the 

micro-sized to conduct the plasma species to the living animals29. However, their device just 

applied to xenografts tumors not systemic cancer treatment. Moreover, delivery of the plasma 

species is crucial to suppress tumor growth and assess efficiency of micro-sized plasma device. 

Hence, this study aims to design micro-sized cold atmospheric plasma devices with different 

lengths of nozzle in order to enhance delivery of reactive species and evaluate the efficiency of 

these devices on cancer therapy. Fig. 1 shows the potential applications of µCAP for brain and 

breast tumors in the future. 
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Figure 1. Potential applications of µCAP for brain and breast tumors 
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Materials and Methods 

Fig. 2 depicts the schematic of the experiment setup including high voltage power (Fig. 2a) and 

𝜇CAP devices (Fig. 2b). The high voltage power includes DC input, Trigger signal + MOSFET 

(switch), and the secondary output. In this work, the DC input was set at 5 V, square wave signal 

was obtained from the control unit (upper left in Fig. 2a), and a high voltage wave was obtained 

from the square wave signal through the transformer (upper right in Fig. 2a). The 𝜇CAP devices 

consist of a two-electrode (copper) assembly with a central powered electrode (1 mm in diameter) 

and a grounded outer electrode wrapped around the outside of a quartz tube (10 mm) as shown in 

Fig. 2b. The electrodes were connected to the secondary output of the high voltage transformer. 

The peak-peak voltage was approximately 8 kV and the frequency of the discharge was around 16 

kHz (upper right in Fig. 2a). The secondary output of high voltage transformer was connected to 

the first input. At the end of a quartz tube, a 275 ± 5 𝜇m inner diameter capillary tube (stainless 

steel) with 20 or 60 mm length was attached and insulated by epoxy. The feed gas for this study 

was industrial purity helium, which was injected into the quartz tube with a 0.2 L/min gas flow 

rate. Longer tube (60 mm) is needed to access deeper tumors in brain and breast. In this study, we 

are accessing effect of length to understand limitation of depth. 

In this study, we are assessing the effect of tube length to understand limitation of depth. For 

instance, it is believed that a longer tube (60 mm) is needed to access deeper tumors in brain and 

breast. UV-visible-NIR, a range of wavelength 200-850 nm, was investigated on plasma to detect 

various RNS and ROS (nitrogen [N2], nitric oxide [–NO], nitrogen cation [N+2], atomic oxygen 

[O], and hydroxyl radicals [–OH]). The optical probe was placed at distance of 1.0 cm in front of 

the plasma jet nozzle. Data were then collected with an integration time of 100 ms. 
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A fluorimetric hydrogen peroxide assay Kit (Sigma-Aldrich) was used for measuring the amount 

of H2O2, according to the manufacturer’s protocol. Briefly, 50 µl of standard curve, control, and 

experimental samples were added to 96-well flat-bottom black plates, and then 50 µl of Master 

Mix was added to each of well. The plates were incubated for 20 min at room temperature protected 

from light and fluorescence was measured by a Synergy H1 Hybrid Multi-Mode Microplate 

Reader at Ex/Em: 540/590 nm.  

RNS level were determined by using a Griess Reagent System (Promega Corporation) according 

to the instructions provided by the manufacturer. Briefly, 50 µl of samples and 50 µl of the provided 

Sulfanilamide Solution were added to 96-well flat-bottom plates and incubated for 5-10 minutes 

at room temperature. Subsequently, 50 µl of the NED solution was added to each well and 

incubated at room temperature for 5-10 minutes. The absorbance was measured at 540 nm by 

Synergy H1 Hybrid Multi-Mode Microplate Reader. 

XTT sodium salt ((2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-inner 

salt-2H-tetrazolium, monosodium salt)) solution, purchased from Cayman chemical, was prepared 

by dissolving XTT power in DMEM. XTT sodium salt solution (100 µl per well, 500 𝜇M) in a 96-

well flat-bottom plate by µCAP for 5, 10, 30, 60, and 120 seconds. The gap between the outlet of 

µCAP and the surface of the samples was set at approximately 3 mm. As a control, untreated XTT 

sodium salt solution in triplicate were transferred to a 96-well flat-bottom plate. As a control, 

DMEM (100 µl per well) was treated with µCAP for 5, 10, 30, 60, and 120 seconds. The color 

change of XTT solution was used to indicate the presence of superoxide (O2
-). A color change of 

XTT solution was measured by Hach DR 6000 uv vis spectrophotometer at 470 nm. 

A MB solution was prepared by dissolving MB power in DMEM. MB solutions (100 µl per well, 

0.01g/L) in a 96-well flat-bottom plate were treated by µCAP for 5, 10, 30, 60, and 120 seconds. 
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The gap between the outlet of µCAP and the surface of the samples was approximately 3 mm. As 

a control, untreated MB solutions in triplicate were transferred to a 96-well flat-bottom plate. The 

color change of methylene blue shows the presence of OH radicals via immediate and distinct 

bleaching of methylene blue dye (qualitatively analysis). The color change of the MB solution was 

measured as the absorbance at 664 nm by a Synergy H1 Hybrid Multi-Mode Microplate Reader. 

Human glioblastoma cancer cells (U87MG, Perkin Elmer) were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM, Life Technologies) supplemented with 10% (v/v) fetal bovine serum 

(Atlantic Biologicals) and 1% (v/v) penicillin and streptomycin (Life Technologies). Cultures were 

maintained at 37°C in a humidified incubator containing 5% (v/v) CO2. The human breast cancer 

cell line (MDA-MB-231) was cultured in Dulbecco’s Modified Eagle Medium (DMEM, Life 

Technologies) supplemented with 10% (v/v) foetal bovine serum (Atlantic Biologicals) and 1% 

(v/v) penicillin and streptomycin (Life Technologies). Cultures were maintained at 37 °C in a 

humidified incubator containing 5% (v/v) CO2.  

U87 and MDA-MB-231 cells were plated in 96-well flat-bottom microplates at a density of 3000 

cells per well in 100 µL of complete culture medium. Cells were incubated for 24 hours to ensure 

proper cell adherence and stability. On day 2, the cells were treated by He µCAP for 0, 5, 10, 30, 

60, and 120 seconds. Cells were further incubated at 37°C for 24 and 48 hours. The cell viability 

of the glioblastoma and breast cancer cells were measured for each incubation time point with an 

MTT assay. 100 µL of MTT solution (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) (Sigma-Aldrich) was added to each well followed by a 3-hour incubation. The MTT 

solution was discarded and 100 µL per well of MTT solvent (0.4% (v/v) HCl in anhydrous 

isopropanol) was added to the wells.  The absorbance of the purple solution was recorded at 570 

nm with a Synergy H1 Hybrid Multi-Mode Microplate Reader. 
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Results and Discussion 

   

Figure 2. Schematic representation of the experiment setup including high voltage power part (a) and the micro-
sized cold atmospheric plasma with 20 mm and 60 mm length of stainless steel tubes (b).  

  
Figure 3. Optical emission spectrum detected from the He µCAP with 20mm (a) and 60 mm (b) length’s tube using 

UV-visible-NIR, in the 250–850 nm wavelength range. 

The reactive species generated by the 𝜇CAP device with different micro-sized tube length are 

detected by optical emission spectroscopy, as shown in Fig. 3. The identification of the emission 

line and bands was performed mainly according to reference30.  For 20 mm and 60 mm length 

devices, an N2 second-positive system (315 nm, 337 nm 357 nm, and 380 nm) representing the 

photon emission intensity drops from the state C3Πu to β3Πg with different upper and lower 
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vibration quantum numbers. There are very weak emission lines in the special range of 250-300 

nm, which are detected as NO lines. The helium bands were assigned between 500 and 750 nm as 

shown in Fig. 3a and 3b. We also observed a high-intensity OH/O3 peak at 309 nm for both 20 

mm and 60 mm length devices. Atomic oxygen (O, including the ground state and all the excited 

states of atomic oxygen) was observed at 777 nm in both devices, which was believed to have a 

significant effect on cells and therefore a broad biomedical application. Micro-sized plasma is a 

complicated environment that combines the comprehensive effect of different ions and reactive 

species. The 60 mm µCAP has a bit less electron and species than 20 mm µCAP due to long 

distance delivery. 

  
Figure 4 The electron number of 20 mm (a) and 60 mm (b) length µCAP 

The experimental Rayleigh microwave scattering (RMS) system was described previosuly19. The 

detection of the scattered signal was accomplished using a homodyne scheme by means of an I/Q 

mixer, providing in-phase (I) and quadrature (Q) outputs. For the entire range of scattered signals, 

the amplifiers and mixer were operated in linear mode. The total amplitude of the scattered 

microwave signal was determined by: 𝑈 = 𝐼' + 𝑄'. We can calculate the total electron number 

in the plasma as 𝑁+ = 𝑈(𝑤' + 𝑣/' )/(2.82×1089𝐴𝑣/), where 𝑤 is the angular frequency, 𝑣/ is 
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the frequency of the electron-neutral collisions, and 𝐴 is the proportionality coefficient31. The total 

electron number in the jet from 𝜇CAP with 20 mm and 60 mm is presented in Fig. 4a and 4b, and 

the total electron number for one discharge period is 4.60	×	10>' and 4.04	×	10>', respectively. 

A very small decrease of electron number has been detected in 60 mm 𝜇CAP comparing with 20 

mm 𝜇CAP. 

 

    
Figure 5. Relative O2

- and •OH concentration of 20 mm and 60 mm µCAP-treated DMEM. For relative O2
-

concentration: (a) 20 mm and (b) 60 mm. For relative •OH concentration: (c) 20 mm and (d) 60 mm. Student 
t-test was performed, and the statistical significance compared to µ CAP 5 s treatment is indicated as * p < 

0.05, ** p < 0.01, *** p < 0.001. (n = 3). 

XTT solution was used to determine the relative concentration of superoxide (O2
-). Superoxide 

radical reduced soluble formazans of the tetrazolium dye XTT32,33. Fig. 5a and 5b shows the 

relative superoxide concentration of 20 mm and 60mm µCAP treatment of DMEM. Relative 

intensity increases with treatment, which corresponds to the relative concentration of superoxide 
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increasing with treatment. Comparing the 20 mm with 60 mm lengths, the 20 mm µCAP device 

produced a higher relative concentration of superoxide than the 60 mm device. Methylene blue 

(MB) was used to assess the relative concentration of hydroxyl radicals (•OH). It is known that 

MB reacts with •OH aqueous solutions, leading to a visible color change34. Fig. 5c and 5d shows 

that the relative MB concentration decreases with the treatment time of µCAP, suggesting that 

more •OH species are generated in DMEM (20 mm > 60 mm). Overall, these findings demonstrate 

that there is an increase in the relative concentration of O2
- and •OH as a function of µCAP 

treatment time.  

    

 
Figure 6. H2O2 and NO2

- concentration of 20 mm and 60 mm µCAP-treated DMEM. For H2O2 concentration: 
(a) 20 mm and (b) 60 mm. For NO2

- concentration: (c) 20 mm and (d) 60 mm. Student t-test was performed, 
and the statistical significance compared to µ CAP 5 s treatment is indicated as * p < 0.05, ** p < 0.01, *** p < 

0.001. (n = 3). 
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DMEM treated by the 20 mm and 60 mm µCAP induced changes in the concentration of H2O2 and 

NO2
- as a function of the treatment time. These results are shown in Fig. 6 with concentrations 

produced by the 20 mm and 60 mm He µCAP devices. In Fig. 6a, the H2O2 concentrations 

produced by 20 mm He µCAP device increase with treatment time up to 60 seconds, but between 

60 seconds and 120 seconds the concentration decreased. For the H2O2 concentration produced by 

60 mm He µCAP increased with treatment time (In Fig. 6b). It means that the H2O2 concentration 

earlier reaches saturation in 20 mm length earlier than with the 60 mm length µCAP device. In Fig. 

5, we know that He µCAP produces •OH and O2
- in DMEM, which are the two most important 

species in plasma-activated media. In particular, •OH reacting with •OH and O2
- reacting with 2H+ 

lead to H2O2 formation35. Both NO2
- concentrations of 20 mm and 60 mm increase with treatment 

time (in Fig. 6c and Fig. 6d), and NO2
- concentrations of 20 mm is much higher than 60mm. 

Comparing NO2
- concentration with the H2O2 concentration under same condition, NO2

- 

concentration is much higher than H2O2 concentration. A possible hypothesis for this result is that 

DMEM comprises over 30 components such as inorganic salts, amino acids and vitamins, and 

plasma might react with amino acids to form NO2
-.  
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Figure 7. Cell viability of U87 after 24 and 48 hours’ incubation with µCAP treatment with 20 mm and 60 mm 

length during 5, 10, 30, 60, and 120 seconds’ treatment. Cell viability of U87 treated by 20 mm He µCAP at (a) 24-h 
incubation and (c) 48-h incubation. Cell viability of U87 treated by 60 mm He µCAP at (b) 24-h incubation and (d) 

48-h incubation. The ratios of surviving cells for each cell line were normalized relative to controls (DMEM). 
Student t-test was performed, and the statistical significance compared to cells present in DMEM is indicated as *p 

< 0.05, **p < 0.01, ***p < 0.005. (n=3) 

Fig. 7 shows the cell viability of the brain (glioblastoma U87) cancer cells after 24 and 48 hours’ 

incubation with µCAP during 5, 10, 30, 60, and 120 seconds’ treatment with the 20 mm and 60 

mm length µCAP device, respectively. For the 20 mm length µCAP treatment, the cell viability of 

brain cancer cells was lower than that of the 60 mm length at each treatment duration (from 5 to 

60 seconds), and dropped with increasing treatment time. For both 20 mm and 60 mm, 120 seconds’ 

treatment has similar effect on cell viability of U87 cancer cells. For 48 hours’ incubation under 

20 mm µCAP treatment, 60 and 120 seconds’ duration has similar effect on cell viability. Thus, 

overall conclusion is that 60mm tube can still produce reactive species while allowing access to 
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deeper tumors. 

 

 
Figure 8. Cell viability of MDA-MB-231 after 24 and 48 hours’ incubation with µCAP treatment with 20 mm and 

60 mm length during 5, 10, 30, 60, and 120 seconds’ treatment. Cell viability of MDA-MB-231treated by 20 mm He 
µCAP at (a) 24-h incubation and (c) 48-h incubation. Cell viability of MDA-MB-231 treated by 60 mm He µCAP at 
(b) 24-h incubation and (d) 48-h incubation. The ratios of surviving cells for each cell line were calculated relative 

to controls (DMEM). Student t-test was performed, and the statistical significance compared to cells present in 
DMEM is indicated as *p < 0.05, **p < 0.01, ***p < 0.005. (n=3) 

Fig. 8 shows the cell viability of the breast (MDA-MB-231) cancer cells after 24 and 48 hours’ 

incubation with µCAP treatment with the 20 mm and 60 mm length µCAP devices during 5, 10, 

30, 60, and 120 seconds’ duration. For both 20 mm and 60 mm µCAP treatment, the cell viability 

after 24 and 48 hours’ incubation dropped with increasing treatment time. For 20 mm µCAP 

treatment, the cell viability of breast cancer cells was lower than that of the 60 mm length at each 

treatment duration. 

The direct plasma jet irradiation is limited to the skin and it can also be invoked as a supplement 
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the current cannulas from which the plasma emanates are too large for intracranial applications. 

Thus, we developed a micro-sized plasma devices with 20 mm and 60 mm length stainless steel 

tubes, which both can achieve effective killing of brain and breast cancer cells. This preliminary 

study offers significant potential for new treatment applications. Numerous studies reported 

plasma-induced apoptosis in cancer cells due to plasma-generated various reactive species1,36,37. 

Plasma generates various kinds of ROS and RNS, including hydrogen peroxide (H2O2), ozone (O3), 

hydroxyl radical (•OH), atomic oxygen (O), superoxide (O2
-), nitric oxide (NO) and peroxynitrite 

anion (ONOO-), singlet delta oxygen (O2(1∆𝑔)), nitrite (NO2
-)37,38 and are displayed in Fig. 3. In 

this paper, we have specifically measured relative concentrations of O2
- and •OH (short-lived 

species, Fig. 5) and the concentration of H2O2 and NO2
- (long-lived species, Fig. 6). The relative 

concentration of O2
- treated by µCAP with 20 mm and 60 mm increases with treatment time (Fig. 

5a and 5b). O2
- can activate mitochondrial-mediated apoptosis by changing mitochondrial 

membrane potential and simultaneously up-regulates pro-apoptotic genes and down-regulates anti-

apoptotic genes for activation of caspases resulting in cell death39. Fig. 5c and 5d shows the relative 

concentration of •OH in DMEM treated by µCAP with 20 mm and 60 mm also increases with 

treatment time. •OH derived amino acid peroxides can contribute to cell injury because •OH itself 

and protein (amino acid) peroxides are able to react with DNA, thereby inducing various forms of 

damage40. Compared with cell viability of both cancer lines, the trend of cell death can be partly 

attributed to the increase of O2
- and •OH concentration with treatment time. On the other hand, the 

20 mm µCAP device shows higher relative concentrations of O2
- and •OH, such that the 20 mm 

µCAP device is more effective in killing both cancer cell lines than the 60 mm µCAP device. Fig. 

6 shows H2O2 and NO2
- concentration of the 20 mm and 60 mm µCAP-treated DMEM. H2O2 can 

induce cell death by apoptosis and necrosis, while NO2
- are known to induce cell death via DNA 
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damage36,41.  Thus, the synergism of H2O2 and NO2
- might be an important factor in cancer cells 

killing efficiency.  

Several methods are now being used for the cancer treatment such as chemotherapy, surgery, and 

radiotherapy42-44.  The conventional methods have some disadvantages such as low rapidity, high 

cost, and adverse effects. However, plasma treatment may overcome these disadvantages of the 

traditional treatments. Currently, plasma can be directly applied to skin cancers, while it is not 

applicable for more systemic cancer treatment. However, we developed novel µCAP with 20 mm 

and 60 mm length can be considered as a local treatment tool and does not exert the systemic 

therapeutic effects like chemical drugs, meanwhile removing limits of plasma itself. Overall, the 

above results and discussion indicate that both µCAP with 20 mm and 60 mm length might be 

useful and should be considered in a clinical medical application. 
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Conclusions  

In this work, we showed that the newly developed micro-sized cold atmospheric plasma (µCAP) 

device with 20 mm and 60 mm length stainless steel tubes induce the production of reactive species 

and radicals in culture medium. There is an increase in the concentration of O2
-, •OH, H2O2, and 

NO2
- as a function of µCAP treatment time, which matches the trend of cell viability of two cancer 

cells with µCAP treatment time. A synergistic effect of short- and long-lived species present in the 

plasma treating DMEM is suspected to play a key role in cell death. Both the 20 and 60 mm length 

devices have s significant effect on both U87 and MDA-MB-231 cancer cell viability, allowing 

access to both superficial and deeper tumors. The results of this study suggest a possibility for 

clinical applications of this micro-µCAP device on brain and breast tumors. Future work looks to 

utilized the micro-µCAP device inside the patient’s body. 
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