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. Superconductor, levitated by an unseen magnet, in which countless

 trillions of electrons form a vast interconnected quantum state.
= Scientific American, January 2013




Che New Aork Eimes

Sorry, Einstein. Quantum Study Suggests
‘Spooky Action’ Is Real.

By JOHN MARKOFF OCT. 21, 2015

In a landmark study, scientists at Delft University of Technology in the
Netherlands reported that they had conducted an experiment that they say proved
one of the most fundamental claims of quantum theory — that objects separated by

great distance can instantaneously affect each other’s behavior.

Part of the laboratory
setup for an experiment
at Delft University of
Technology, in which
two diamonds were set
1.3 kilometers apart,
entangled and then
shared information.




Quantum
entanglement




Principles of Quantum Mechanics: |. Quantum Superposition

The double slit experiment

TWO
SLITS

Interference of water waves
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The double slit experiment

Bullets
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The double slit experiment

Send electrons through the slits
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The double slit experiment

Interference of electrons
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The double slit experiment

Is the electron a wave !

Interference of electrons
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The double slit experiment

[
Electron source
=
TWO
SLITS Unlike water waves, electrons arrive

one-by-one (so is it like a particle ?)

Interference of electrons
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The double slit experiment

But if it is
like a
particle,
which slit
does each
electron pass
through ?

Interference of electrons
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The double slit experiment

But if it is Each
like a
particle, electron
which slit passes
does each through
electron pass both slits |
through ?

Interference of electrons
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The double slit experiment

. : . Let |L) represent the state
with the electron in the left slit
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The double slit experiment
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Principles of Quantum Mechanics: |. Quantum Superposition

The double slit experiment

[ 4 .. Let |L) represent the state
with the electron in the left slit

And |R) represents the state
with the electron in the right slit

Actual state of each electron is

L) + |R)
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with more than one particle
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Quantum Entanglement: quantum superposition

with more than one particle

Hydrogen atom: ' | /|\>
Hydrogen molecule:

(ITL) = 14T)

L
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Quantum Entanglement: quantum superposition
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Principles of Quantum Mechanics: |l. Quantum Entanglement
Quantum Entanglement: quantum superposition

with more than one particle

Einstein-Podolsky-Rosen “paradox™ (1935):

Measurement of one particle instantaneously
determines the state of the other particle
arbitrarily far away
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Black Holes

Objects so dense that light 1s
gravitationally bound to them.

In Einstein’s theory, the
region inside the black hole
horizon is disconnected from

the rest of the universe.

2GM
2

Horizon radius R =
C



On September 14,2015, LIGO detected the merger of
two black holes, each weighing about 30 solar masses,
with radii of about 100 km, |.3 billion light years away
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Black Holes + Quantum theory

Around |974, Bekenstein and Hawking
showed that the application of the
quantum theory across a black hole
horizon led to many astonishing
conclusions



Quantum Entanglement across a black hole horizon
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Quantum Entanglement across a black hole horizon

Black hole
horizon
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Black hole
horizon



Quantum Entanglement across a black hole horizon

There is long-range quantum

entanglement between the inside
and outside of a black hole

)

Black hole
horizon



Quantum Entanglement across a black hole horizon

Hawking used this to show that

black hole horizons have an
entropy and a temperature

)

Black hole
horizon



Quantum Entanglement across a black hole horizon

Hawking used this to show that
black hole horizons have an

entropy and a temperature
(because to an outside observer, the state of the

electron inside the black hole is an unknown)

Black hole
horizon
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e The Hawking temperature, Ty influences the radiation from the
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Nd-Fe-B magnets,YBaCuO superconductor

Julian Hetel and Nandini Trivedi, Ohio State University
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Square lattice of Cu sites
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Square lattice of Cu sites

Electrons
entangle in
(“Cooper”)
pairs into
chemical bonds

& o-1h-1T)



Square lattice of Cu sites

Superconductivity

Cooper pairs
form quantum
superpositions
at different
locations:
“Bose-Einstein
condensation”
in which all
pairs are
“everywhere at
the same time”
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Square lattice of Cu sites

Superconductivity

Cooper pairs
form quantum

superpositions
at different

locations:
“Bose-Einstein
condensation’

in which all
pairs are

“everywhere at
the same time”




Square lattice of Cu sites

High temperature superconductivity !

Electrons
entangle by
exchanging
partners, and
there is long-
range
guantum
entanglement
in the strange
metal.
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Almost all many-electron systems are described by the
quasiparticle concept: a quasiparticle is an “excited
lump” in the many-electron state which responds just

like an ordinary particle.
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Almost all many-electron systems are described by the
quasiparticle concept: a quasiparticle is an “excited
lump” in the many-electron state which responds just
like an ordinary particle.

Quasiparticles eventually collide with each other.
Such collisions eventually leads to thermal
equilibration in a chaotic quantum state, but the
equilibration takes a long time.



Quantum matter without guasiparticles

The complex quantum entanglement in the strange
metal does not allow for any quasiparticle excitations.
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e Systems without quasiparticles, like the strange metal,
reach quantum chaos much more quickly than those with-
out quasiparticles.



Quantum matter without quasiparticles

The complex quantum entanglement in the strange
metal does not allow for any quasiparticle excitations.

e Systems without quasiparticles, like the strange metal,
reach quantum chaos much more quickly than those with-
out quasiparticles.

e There is an lower bound on the phase coherence time (7,),
and the time to many-body quantum chaos (77) in all
many-body quantum systems:

h
> O 1
Ty C T (SS, 1999)
h

27T]~CBT

[V

g (Maldacena, Shenker, Stanford, 2015)



Quantum matter without quasiparticles

The complex quantum entanglement in the strange
metal does not allow for any quasiparticle excitations.

e Systems without quasiparticles, like the strange metal,
reach quantum chaos much more quickly than those with-
out quasiparticles.

e There is an lower bound on the phase coherence time (7,),
and the time to many-body quantum chaos (77) in all
many-body quantum systems:

h
> O0—— SS. 1999
Te = kgl ( )
h
T, > (Maldacena, Shenker, Stanford, 2015)
27T]~CBT

e In the strange metal the above inequalities become equal-
ities as 1" — O.
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Quantum
entanglement

Black Strange
holes metals
A "toy model” which is both a
strange metal and a black holel!




The Sachdev-Ye-Kitaev (SYK) model
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The Sachdev-Ye-Kitaev (SYK) model
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Place electrons randomly on some sites



The Sachdev-Ye-Kitaev (SYK) model

Entangle electrons pairwise randomly
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The Sachdev-Ye-Kitaev (SYK) model
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The Sachdev-Ye-Kitaev (SYK) model
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The SYK model has “nothing but entanglement”



The Sachdev-Ye-Kitaev (SYK) model
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This describes both a strange metal and a black hole!



SYK model

N

1

o (2N)3/2 > Jumecicioe, —nY e
i,k =1 i

cic; +cjc; =0 cic; -+ c;f-ci = 04

Q = %chcz

Jij.ke are independent random variables with J;;..¢ = 0 and |J;;.x¢]? = J?
N — oo yields critical strange metal.

SS and J.Ye 1993
A. Kitaev, (2015) ;SS 2015
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SYK and black holes

i Black hole1
horizon

J

The SYK model has “dual” description

in which an extra spatial dimension, (, emerges.
The curvature of this “emergent” spacetime is described
by Einstein’s theory of general relativity




SYK and black holes

i Black hole\
horizon

J

=)

—

An extra spatial
dimension emerges from
quantum entanglement!

SS 2010;A. Kitaev, 2015



SYK and black holes

i Black hole\
horizon

J

—

Both the SYK model

and the theory of gravity
h

have a time to quantum chaos = T A Kitaev, 2015
b Maldacena, Stanford 2016




Tensor network of

hierarchical entanglement = D-dimensional

» space
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depth of
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String theory near
a “‘D-brane”

— D-dimensional
» Sspace

N

Emergent spatial direction
of SYK model or string theory




String theory near
a “‘D-brane”

— D-dimensional
» Sspace

¢ Quantum entanglement

leads to an emergent
spatial dimension
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Emergent spatial direction
of SYK model or string theory
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Black Strange
holes metals
A "toy model” which is both a
strange metal and a black holel!
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